Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli.

نویسندگان

  • C Prigent-Combaret
  • O Vidal
  • C Dorel
  • P Lejeune
چکیده

To get further information on bacterial surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli K-12, random insertion mutagenesis with Mu dX, a mini-Mu carrying the promoterless lacZ gene, was performed with an ompR234 adherent strain, and a simple screen was developed to assess changes in gene expression in biofilm cells versus planktonic cells. This screen revealed that major changes in the pattern of gene expression occur during biofilm development: the transcription of 38% of the genes was affected within biofilms. Different cell functions were more expressed in sessile bacteria: the OmpC porin, the high-affinity transport system of glycine betaine (encoded by the proU operon), the colanic acid exopolysaccharide (wca locus, formerly called cps), tripeptidase T (pepT), and the nickel high-affinity transport system (nikA). On the other hand, the syntheses of flagellin (fliC) and of a putative protein of 92 amino acids (f92) were both reduced in biofilms. Such a genetic reprogramming of gene expression in biofilms seems to result from changes in multiple environmental physicochemical conditions. In this work, we show that bacteria within biofilms encounter higher-osmolarity conditions, greater oxygen limitation, and higher cell density than in the liquid phase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zinc oxide nanoparticle reduced biofilm formation and antigen 43 expressions in uropathogenic Escherichia coli

Objective(s): This study aimed to investigate the effect of zinc oxide nanoparticles (ZnO-np) on biofilm formation and expression of the flu gene in uropathogenic Escherichia coli (UPEC) strains. Materials and Methods: Minimum inhibitory concentration (MIC) of ZnO-np was determined by agar dilution method. The effect of MIC and sub-MIC concentrations of ZnO-np on biofilm formation were determin...

متن کامل

Impact of Various Environmental and Growth Conditions on Antigen 43 Gene Expression and Biofilm Formation by Uropathogenic Echserchia coli

ABSTRACT         Background and Objectives: Biofilm is a population of bacteria growing on a surface and enclosed in an exopolysaccharides matrix, which increases resistance to antimicrobial agents and immune response. Uropathogenic Escherichia coli (UPEC) are biofilm-forming bacteria and the most common cause of urinary tract infections (UTIs). This study ev...

متن کامل

Pleiotropic Roles of uvrY on Biofilm Formation, Motility and Virulence in Uropathogenic Escherichia coli CFT073

Urinary tract infections primarily caused by uropathogenic strains of Escherichia coli (E. coli) remain a significant public health problem in both developed and developing countries. An important virulence determinant in uropathogenesis is biofilm formation which requires expression of fimbriae, flagella, and other surface components such as lipopolysaccharides. In this study, we explored the ...

متن کامل

Relationship of cell surface hydrophobicity with biofilm formation and growth rate: A study on Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli

Objective(s): This study was designed to determine the relationship of Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli isolates in multispecies biofilms and their individual phenotypic characters in biofilm consortia. Materials and Methods:  The subject isolates were recovered from different food samples and identified on the basis of growth on differential and selective med...

متن کامل

Complex regulatory network controls initial adhesion and biofilm formation in Escherichia coli via regulation of the csgD gene.

The Escherichia coli OmpR/EnvZ two-component regulatory system, which senses environmental osmolarity, also regulates biofilm formation. Up mutations in the ompR gene, such as the ompR234 mutation, stimulate laboratory strains of E. coli to grow as a biofilm community rather than in a planktonic state. In this report, we show that the OmpR234 protein promotes biofilm formation by binding the cs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 181 19  شماره 

صفحات  -

تاریخ انتشار 1999